1. Disposition and Safety of Inhaled Biodegradable Nanomedicines: Opportunities and Challenges. Haque S, Whittaker MR, McIntosh MP, Pouton CW, Kaminskas LM. Nanomedicine. 2016;12(6): 1703-24.
  2. Conjugation of 10 kDa Linear PEG onto Trastuzumab Fab' Is Sufficient to Significantly Enhance Lymphatic Exposure while Preserving in Vitro Biological Activity. Chan LJ, Ascher DB, Yadav R, Bulitta JB, Williams CC, Porter CJ, Landersdorfer CB, Kaminskas LM. Mol Pharm. 2016;13(4): 1229-41.
  3. A Comparison of the Pharmacokinetics and Pulmonary Lymphatic Exposure of a Generation 4 PEGylated Dendrimer Following Intravenous and Aerosol Administration to Rats and Sheep. Ryan GM, Bischof RJ, Enkhbaatar P, McLeod VM, Chan LJ, Jones SA, Owen DJ, Porter CJ, Kaminskas LM. Pharm Res. 2016;33(2): 510-25.
  4. Molecular weight (hydrodynamic radius) dictates the systemic pharmacokinetics and tumour disposition of polyPEG star polymers.Khor SY, Hu J, McLeod VM, Quinn JF, Williamson M, Porter CJH, Whittaker MR, Kaminskas LM, Davis TP. Nanomedicine. 2015; 11(8): 2099-108.
  5.  From sewer to saviour – targeting the lymphatic system to promote drug disposition and activity. Trevaskis NT, Kaminskas LM, Porter CJH. Nature Reviews Drug Discovery. 2015; 14(11); 781-803.
  6. PEGylated interferon displays differences in plasma clearance and bioavailability between male and female mice and between female immunocompetent C57Bl/6J and athymic nude mice. Landersdorfer CB, Caliph SM, Shackleford DM, Ascher DB, Kaminskas LM. J Pharm Sci. 2015 May;104(5):1848-55.
  7. Spray-Dried Influenza Antigen with Trehalose and Leucine Produces an Aerosolizable Powder Vaccine Formulation that Induces Strong Systemic and Mucosal Immunity after Pulmonary Administration. Sou T, Morton DA, Williamson M, Meeusen EN, Kaminskas LM, McIntosh MP. J Aerosol Med Pulm Drug Deliv. 2015; 28 (5): 361-71.
  8. PEGylation does not significantly change the initial intravenous or subcutaneous pharmacokinetics or lymphatic exposure of trastuzumab in rats but increases plasma clearance after subcutaneous administration. Chan LJ, Bulitta JB, Ascher DB, Haynes JM, McLeod VM, Porter CJ, Williams CC, Kaminskas LM. Mol Pharm. 2015;12(3):794-809.
  9. Optimal PEGylation can improve the exposure of interferon in the lungs following pulmonary administration. Mcleod VM, Chan LJ, Ryan GM, Porter CJ, Kaminskas LM. J Pharm Sci. 2015;104(4):1421-30.
  10. Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity in tumour-burdened lymph nodes after intravenous and subcutaneous administration in rats. LM Kaminskas, VM McLeod, DB Ascher, GM Ryan, S Jones, J Haynes, N Trevaskis, L Chan, E Sloan, B Finnin, M Williamson, T Velkov, B Kelly, ED Williams, DJ Owen, CJH Porter. Mol Pharm. 2014. 2015;12(2):432-43
  11. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M, Thienthong N, Owen DJ, Porter CJ. J Control Release. 2014;183:18-26
  12. The Lymphatic System Plays a Major Role in the Intravenous and Subcutaneous Pharmacokinetics of Trastuzumab in Rats. Dahlberg AM, Kaminskas LM, Smith A, Nicolazzo JA, Porter CJ, Bulitta JB, McIntosh MP. Mol Pharm. 2014; 11: 496-504.
  13. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. Ryan GM, Kaminskas LM, Bulitta JB, McIntosh MP, Owen DJ, Porter CJ. J Control Release. 2013;172(1):128-36.
  14.  Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Ryan GM, Kaminskas LM, Kelly BD, Owen DJ, McIntosh MP, Porter CJ. Mol Pharm. 2013;10(8):2986-95.
  15. PEGylation of interferon α2 improves lymphatic exposure after subcutaneous and intravenous administration and improves antitumour efficacy against lymphatic breast cancer metastases. Kaminskas LM, Ascher DB, McLeod VM, Herold MJ, Le CP, Sloan EK, Porter CJ. J Control Release. 2013;168(2):200-8.
  16. Association of chemotherapeutic drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation compared to noncovalent encapsulation. Kaminskas LM, McLeod VM, Porter CJ, Boyd BJ. Mol Pharm. 2012; 9(3):355-73.
  17. Doxorubicin-conjugated PEGylated dendrimers show similar tumoricidal activity but lower systemic toxicity when compared to PEGylated liposome and solution formulations in mouse and rat tumor models. Kaminskas LM, McLeod VM, Kelly BD, Cullinane C, Sberna G, Williamson M, Boyd BJ, Owen DJ, Porter CJ. Mol Pharm. 2012; 9(3):422-32.
  18. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Kaminskas LM, Boyd BJ, Porter CJ. Nanomedicine (Lond). 2011; 6(6):1063-84.
  19. A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Kaminskas LM, McLeod VM, Kelly BD, Sberna G, Boyd BJ, Williamson M, Owen DJ, Porter CJ. Nanomedicine. 2012; 8(1):103-11.
  20. Targeting the lymphatics using dendritic polymers (dendrimers). Kaminskas LM, Porter CJ. Adv Drug Deliv Rev. 2011; 63(10-11):890-900.