Skip to menu Skip to content Skip to footer
The University of Queensland
  • Study
  • Research
  • Partners and community
  • About
School of Biomedical Sciences
  • Home
  • About
    • About
    • Head of School's welcome
    • Strategic Intent
    • Global strategy
    • Committees
    • News
    • Events
  • Study
    • Study
    • Undergraduate
    • Honours
    • Higher Degrees by Research
    • Short Course in Clinical Anatomy
  • Research
    • Research
    • Research themes
    • Research groups
    • Early career researchers
    • Research capabilities
    • Undergraduate research experiences
  • Facilities
    • Facilities
    • Analytical Facility
    • Gross Anatomy Facility
    • Histology Facility
    • Integrated Pathology Learning Centre
    • Integrated Physiology Facility
    • Microscopy and Image Analysis Facility
    • Teaching facilities
    • Viral Vector Core
  • Student support
    • Student support
    • Program and academic advice
    • SBMS assessment guidelines
    • Orientation
    • Resources
    • First year study sessions
    • Research student resources
    • Student-staff partnerships
    • Student employability
    • Scholarships
  • Engagement
    • Engagement
    • Donate
    • Body Donor Program
    • Work with us
    • Industry partnerships
    • Primary and high school activities
  • Our people
  • Contact
  • Study
  • Research
  • Partners and community
  • About
  • UQ home
  • News
  • Events
  • Give
  • Contact
  • UQ home
  • News
  • Events
  • Give
  • Contact
School of Biomedical Sciences
  • Home
  • About
    • Head of School's welcome
    • Strategic Intent
    • Global strategy
    • Committees
    • News
    • Events
  • Study
    • Undergraduate
    • Honours
    • Higher Degrees by Research
    • Short Course in Clinical Anatomy
  • Research
    • Research themes
    • Research groups
    • Early career researchers
    • Research capabilities
    • Undergraduate research experiences
  • Facilities
    • Analytical Facility
    • Gross Anatomy Facility
    • Histology Facility
    • Integrated Pathology Learning Centre
    • Integrated Physiology Facility
    • Microscopy and Image Analysis Facility
    • Teaching facilities
    • Viral Vector Core
  • Student support
    • Program and academic advice
    • SBMS assessment guidelines
    • Orientation
    • Resources
    • First year study sessions
    • Research student resources
    • Student-staff partnerships
    • Student employability
    • Scholarships
  • Engagement
    • Donate
    • Body Donor Program
    • Work with us
    • Industry partnerships
    • Primary and high school activities
  • Our people
  • Contact

Student projects

  1. Home
  2. Research
  3. Research groups
  4. Brain growth and regeneration

PhD Student Project - Mr. Jacob Taylor

Anyone committed to any kind of physicalism will argue that pain arises because of the neural structures in the brain. On a physicalist view, then, the absence in some organism of the structures responsible for pain in humans is evidence for absence of pain in that organism. The multiple realizability thesis in philosophy of mind has long been a fallback used by biologists attempting to counteract the evidence from human brain structures in animal pain debates. 

The questions I am most intent on exploring are:

  1. How has the multiple realizability thesis changed since Putnam popularized it in the 1960s in the context of Turing machines and DFAs, and is the machine functionalist version of MR even pertinent to comparative neurobiology?
  2. How does the structure-determines-function principle in biology relate to multiple realizability and scepticism? In particular, is the insistence that a (very) different structure can determine a similar function (i.e., the multiple realizability thesis) reliant on an inversion of traditional scepticism of other minds and hence antithetical to the scientific endeavour?  
  3. How fine-grained must the physicalist's understanding of structure be in order to avoid the Scylla of so narrowly defining structures that only humans qualify for whatever mental state is in question and the Charybdis of so broadly defining structures that we are forced to conclude all other creatures have minds like ours?

Towards closure of the fish pain debate

We are seeking an Arts-Biomedical Science graduate to partake in this ambitious project.

Arguments to the effect that certain animals do or do not have feelings, such as pain, are presumptive arguments. Like legal arguments, presumptive arguments are defeasible arguments, the conclusions of which are thought to be rationally acceptable on the balance of considerations (Walton 1996, 2011). Also like legal arguments, they invite paradoxical worries about how an argument can be both defeasible yet rationally binding (Walton et al, 2008). In legal contexts, we do not have the luxury of leaving questions of guilt or innocence hanging. A decision must be made. So too in matters pertaining to animal welfare, it is necessary to evaluate whether we have sufficient reason to decide whether a particular species of animal does or does not feel pain if we are to ensure that our treatment of that species is ethically appropriate. 

Each of the arguments in the animal consciousness debate can and has been evaluated on its own terms, but an interesting pattern emerges when viewed together as constituting a single dialogue involving multiple reasoners operating on divergent background assumptions and principles of reasoning. From this perspective, it can be seen where the blockages to consensus lie and what it would take to move the debate towards some form of closure so that decisions of importance to animal welfare could be undertaken with more confidence than they currently are. No meta-analysis of this debate as an instance of multi-agent reasoning has hitherto been undertaken. The overarching aim of this project is to conduct just such an analysis in an effort to identify principles that both sides of the debate might rationally agree upon and move the debate towards epistemic closure. 

The principal aims are:

Aim 1. To reconstruct the debate about pain in non-human animals as an instance of multi-agent reasoning or dialogue to clarify precise points of agreement and disagreement,

Aim 2. To argue for shared principles of reasoning drawing on available neuroscientific evidence in order to create avenues towards closure, and

Aim 3. To address concerns about moral risk exceeding epistemic risk in judgements about non-human animal pain.

Australian Aboriginal Flag Torres Strait Islander Flag UQ acknowledges the Traditional Owners and their custodianship of the lands on which UQ is situated. — Reconciliation at UQ
  • Media

    • Media team contacts
    • Find a subject matter expert
    • UQ news
  • Working at UQ

    • Current staff
    • Careers at UQ
    • Strategic plan
    • Staff support
    • IT support for staff
  • Current students

    • my.UQ
    • Programs and courses
    • Key dates
    • Student support
    • IT support for students
  • Library

    • Library
    • Locations and hours
    • Library services
    • Research tools
  • Contact

    • Contact UQ
    • Find a researcher
    • Faculties, schools, institutes and centres
    • Divisions and departments
    • Campuses, maps and transport
    • Media team contacts
    • Find a subject matter expert
    • UQ news
    • Current staff
    • Careers at UQ
    • Strategic plan
    • Staff support
    • IT support for staff
    • my.UQ
    • Programs and courses
    • Key dates
    • Student support
    • IT support for students
    • Library
    • Locations and hours
    • Library services
    • Research tools
    • Contact UQ
    • Find a researcher
    • Faculties, schools, institutes and centres
    • Divisions and departments
    • Campuses, maps and transport
Web login
  • © The University of Queensland
  • ABN: 63 942 912 684
  • CRICOS: 00025B
  • TEQSA: PRV12080
  • Privacy and terms of use
  • Accessibility
  • Right to information
  • Feedback